

LA-UR-18-20605

Approved for public release; distribution is unlimited.

Title: Uranium and Plutonium Isotopic Ratio Methods using FRAM

Author(s): Karpius, Peter Joseph

Intended for: Radiological Triage Spectroscopy Trainee Course

Issued: 2018-01-29

Uranium and Plutonium Isotopic Ratio Methods using FRAM

Fixed energy

Response function

Analysis with

Multiple efficiencies

Pete Karpius

FRAM Isotopic Analysis Software

- FRAM is a powerful isotopic analysis code that has the same underlying theory as MGA.
- Fixed-energy Response-function Analysis with Multiple efficiencies
- Self-calibration using several gamma-ray peaks
- Analyze gamma ray data from 30keV to >1MeV of HPGe planar, HPGe Coaxial, or CdTe detector
- The key difference between the MGA family of codes and FRAM is the use of user-editable analysis parameters in the latter.

What Can FRAM Do?

- Control data acquisition
- Automatically analyze newly acquired data
- Analyze previously acquired data
- Provide information on the quality of the analysis
- Facilitate analysis in unusual situations
 - Non-standard energy calibrations
 - Gamma rays from non-SNM isotopes
 - Poor spectra (within limits)

Controlling Data Acquisition

- FRAM is not MCA software; it requires additional software to control basic detector settings
 - High Voltage
 - Pulse Shaping
- FRAM can be used to set acquisition times in real or live time
- FRAM shows you the spectrum as it is acquired if FRAM is controlling acquisition
 - Count time
 - Number of counts in the (moveable) cursor channel

Isotopic Ratio Principle

$$\frac{N^{i}}{N^{k}} = \frac{C(E^{i}_{j})}{C(E^{k}_{l})} \times \frac{T^{i}_{1/2}}{T^{k}_{1/2}} \times \frac{BR^{k}_{l}}{BR^{i}_{j}} \times \frac{RE(E_{l})}{RE(E_{j})}$$

Nⁱ = Number of atoms of isotope i

 $C(E_i^i)$ = Photopeak area of gamma ray j with energy E_i emitted from isotope i

 $T_{1/2}^{i}$ = Half-life of isotope i

BRi_j = Branching ratio (gamma rays/disintegration) of gamma ray j from isotope i

 $RE(E_j)$ = Relative detection efficiency of gamma ray with energy E_j . Includes detector efficiency, measurement geometry, sample self-absorption, and attenuation in materials between the sample and detector.

Relative Efficiency

General Expression for Peak Area Count Rate

$$C = \frac{N \times ln \ 2 \times BR \times RE}{T_{1/2}}$$

Rearrange

$$\frac{\mathbf{C}}{\mathbf{BR}} = \left\{ \frac{\mathbf{N} \times \ln 2}{\mathbf{T}_{1/2}} \right\} \times \mathbf{RE}$$

Relative efficiency is proportional to count rate and branching ratio

$$RE \propto \frac{C}{BR}$$

Relative Efficiency (Fictional Spectrum)

Relative Efficiency Depends on Detector Efficiency

Relative efficiency for Sample U0446 (200g), no absorber

Curves normalized so that maxima above the K-edge of Uranium are unity.

Relative Efficiency Depends on External Attenuation

Relative Efficiency Depends on Self Attenuation

Large Mass Item

Small Mass Item

Relative Efficiency Curve Components

Independence of Analysis

- Using relative efficiency and isotope ratios makes analysis independent of:
 - Item Characteristics
 - Size
 - Shape
 - Physical and Chemical Composition
 - Packaging
 - Filtering
 - Data Acquisition Limitations
 - Pulse Pile-up
 - Deadtime

NO CALIBRATION IS NEEDED!

FRAM Methodology

Internal Calibration

- Energy
- FWHM
- Peak Shape (Tailing Parameters)

Analysis

- Background continuum
- Peak areas (Response Functions)
- Relative Efficiency
- Isotopic Ratio Calculation
- Isotopic Mass Fraction Calculation

13

13

FRAM Top-Level Flow to Calculation of Activity Ratios

Internal Calibration

Energy -- Piecewise linear calibration between

designated peaks.

- FWHM² = $A_1 + A_2^*E + A_3^*E^{-1}$ fit to FWHM of designated peaks
- **Shape** -- Gaussian with exponential tail -- tail parameters found from residuals on designated peaks after subtracting Gaussian component.

Background Continuum

Continuum Regions of Interest

Calculated Step Function

Gamma-Ray Peak Fitting

X-Ray Peak Shape Convolution (Voigt)

Relative Efficiency Models

- Empirical or Physical
- The empirical model works well with good statistics within a range of continuity.
- The physical model is based on our understanding of radiation shielding physics
- It requires more knowledge
 - Density of the nuclear material
 - Major shielding materials and thicknesses
- The physical model can cross efficiency discontinuities (such as the K edge of Pu)

19

Empirical Relative Efficiency Curve

$$Y = C_1 + C_2 E^{-2} + C_3 (lnE) + C_4 (lnE)^2 + C_5 (lnE)^3 + C_i + C_j E^{-1}$$

Y = log of ratio of (peak area/branching ratio)

E = energy

 C_i = normalization for isotopes beyond the first one

 C_i = normalization for different relative efficiency curves

Physical Efficiency Model

$$RE_{i} = \frac{1 - e^{-\mu_{Pu} \cdot x_{Pu}}}{\mu_{Pu} \cdot x_{Pu}} \cdot \left(\prod_{k} e^{-\mu_{k} \cdot x_{k}}\right) \cdot I_{i} \cdot e^{\beta_{i} / E} \cdot DetEff \cdot E^{b} c^{1 / E}$$

$$Self Attenuation$$

$$Intensity of i^{th}$$

$$Isotope$$

$$External Attenuation$$

$$(where k = Pb, Cd, Fe)$$

$$Heterogeneity Factor$$

$$(associates additional efficiency functions beyond the first one)$$

Uranium Gamma-Ray Spectrum (1-MeV Range)

Uranium Isotopic Composition from Peak Ratios

- From the spectrum, measure the ratios:
 - ²³⁸f/²³⁵f ↔ Isotopic Ratio(²³⁸U/²³⁵U)
 - ²³⁴f/²³⁵f ↔ Isotopic Ratio(²³⁴U/²³⁵U)
- Then calculate the ²³⁵U fraction using the constraint:

$$1 = {}^{238}f + {}^{235}f + {}^{234}f + {}^{236}f$$
i.e.

$$^{235}f = (1 + ^{238}f/^{235}f + ^{234}f/^{235}f + (^{236}f/^{235}f))^{-1}$$

Use the ²³⁵U fraction to solve for ²³⁸f and ²³⁴f.

²³⁶U Estimate by Correlation

- Determine relative content of ²³⁶U from a <u>correlation function</u> based on the fractions of the other uranium isotopes.
- Example form of a correlation function to determine the fraction of ²³⁶U from the fractions of ²³⁵U and ²³⁸U:

$$^{236}f = A \cdot (^{235}f^B \cdot ^{238}f^C)$$

Ref. Los Alamos National Laboratory Document LA-UR-11-03005

Once we have the fraction of ²³⁶U, we can put it back into:

$$238f + 235f + 234f + 236f \ge 1$$

...and then renormalize ²³⁸f, ²³⁵f, and ²³⁴f by this new sum.

Plutonium Gamma-Ray Spectrum (1-MeV Range)

Plutonium Response Function Analysis

Plutonium Isotopic Fractions from Isotopic Ratios

- Sum of all fractions must equal 1:

$$1 = {}^{238}f + {}^{239}f + {}^{240}f + {}^{241}f + ({}^{242}f)$$

Divide by ²³⁹f and then solve for ²³⁹f:

$$^{239}f = [^{238}f/^{239}f + 1 + ^{240}f/^{239}f + ^{241}f/^{239}f + (^{242}f/^{239}f)]^{-1}$$

²⁴²Pu Estimate by Correlation

 Determine relative content of ²⁴²Pu from a <u>correlation</u> function based on the fractions of the other plutonium isotopes:

242
Pu =53[240 Pu]x[241 Pu]/[239 Pu] 2

Gunnink, Nucl. Matl. Mgmt. 9, (2), 83-93 (1980)

Typical form of correlation functions used by MGA (& FRAM):

242
Pu = A×[$(^{238}$ Pu)^B × $(^{239}$ Pu)^C × $(^{240}$ Pu)^D × $(^{241}$ Pu + 241 Am)^E]

amos Note: We renormalize the isotopic fractions as we did with ²³⁶U.

Requirements for Isotopic Analysis

- Isotopic Homogeneity
 - All plutonium (or uranium) must have the same isotopic composition even if it is not physically or chemically alike
- Pu and Am must have same spatial distribution

Isotopic Homogeneity

- The isotopic composition must be uniform throughout the item, even if it is chemically or physically non-uniform.
 - One exception is that FRAM can analyze physically uniform, but isotopically heterogeneous, matrices of plutonium and ²⁴¹Am.

Isotopic Homogeneity:

E S	Metal
	80% Pu239
	15% Pu240
	Powder
	80% Pu239
	15% Pu240
	1070 FUZ4U

Isotopic Heterogeneity:

Powder
80% Pu239
15% Pu240
Powder
50% Pu239
45% Pu240
40 /0 F UZ4U

The Exception:

example:

Uranium Analysis Regions of FRAM

Plutonium Analysis Regions of FRAM

The four overlapping analytical regions that FRAM normally uses for the analysis are shown as four thick horizontal bars above the spectrum.

FRAM Analyze Window

FRAM (Short) Results Window

FRAM Diagnostics

 FRAM provides diagnostic tools for the user to check the quality of the analysis

Diagnostic Tools

- Spectrum
- Fits
- Relative Efficiency
- Results

Region: Checking the GAIN

ROIs aligned with peaks Default ECAL is OK

ROIs NOT aligned with peaks Check default ECAL

Fits: Sum of All Peaks in Region

FRAM Results (Example: Major Errors)

Now we have tons of error messages and warnings

Isotopic Fractions are nonsensical

FRAM Analyze Window for Detective Data

Set Parameter set to one designed for a coaxial detector

Set default gain to 0.366 keV/ch

Editing Parameter Sets

U238

U238

U238

23

24

738,000

739,970

742,830

0.0

0.0

0.0

2.1100e-005

1.1760e-004

9.0700e-004

0

0

0

N

N

N

N

N

N

N

EST.1943

Examples

Uranium Examples:

- Clean analysis of good spectrum
- Analysis with incorrect gain
- Enrichment Study (0.3, 20, 91%)
- Shielded Item

Plutonium Examples

- Clean analysis of good spectrum
- Analysis in different energy regions
- Shielded Item
- Correlation Function Limitations
- Interferences / Additional Nuclides

